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Abstract:

The current literature in program testing is surveyed. A strategy
is proposed for eliminating categories of errors from programs.
Errors may be classified as functional {an incorrect irput-output
pair) or structural (an incorrect statement). An erTor 1s eliminated
if a successful program execution for a given input implies the opro-
gram covuld not contain the error. A "creation condition” guarantees
that a structural error affects the program’s computation. A "orogpa-
gation condition" guarantees that the effect produces a functional
error. An error is eliminated whenever a computation satisfies both
the <creation ano the propagation conditicn and produces correct out-

put.
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i Introduction

Rarely has a developing field rapidly attained a unified under-—
standing of itself; program testing is no exception. Three praoblems
must be addressed if progress is to he made.

(1) How can the quality of test data be measured?
(2) How can the quality of a testing strategy be measured?
(3) What is an appropriate paradigm for program testing®?

A positive answer to the first question would provide confidence
in the results of testing a single program. For now, the tester can
merely cite a few statistics (percentage of paths executad, percentage
of branches s2xecuted, etc.). But what is the value of executing 80% of
the paths? In what sense, if any, is it better to erecute 1000 test
cases rather than 1007 Without an wunderlying theory statistical
claims are dangerous, because they can lull the tester intoc a false

sense of security.

Answering the second question does not avtomatically answer the
fireti a good strategy may sometimes produce a bad test set. The
characteristics of a good strategy could guide researchers into mcre
profitable areas. It is entirely possible that strategies must be spe-
cialized for different program classes. How then <can the various
strategies be compared? Does it even make sense to compare strategies
that cannot be used for the same program? The ability to determine a
test’s quality does not necessarily imply the ability to determine a
testing strategy’'s quality; this would require inferring the quality
of @ testing strategy from {ts results on a finite number of applica-
tions. This, in essence, is using testing to measure the quality of

testing, a rath%r dubious approach at best

The third question suggests that testing is more than saarching
for hidden program errors. Most strategias use what may be called an
error discovery paradigm;i i.e., the ultimate goal of a3 testing stra-
tegy 1is ¢to generate inputs that show a program is incorrect. When a
program executes successfully, the fact is recorded and the search
continues for an input that will reveal an error. Thus, the error

discovery paradism only allows the conclusion that a program is
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correct on its tested domain. This paper suggests that an error elim-
ination paradigm is more appropriate. An error is eliminated if a
successful program execution for a given input implies the program
covld not contain the error. Such an approach allows the canclusion

that specific errors are not contained in a program.

This paper discusses one way of eliminating errors €fram programs
through the use of creation and propagation conditions. A creation
condition guarantees that a potential error in the <code affects the
program’s computation. A propagation condition guarantees that the
effect produces an output error. If the output is correct, the poten-
tial error did not occur, and thus can be eliminated from the program.
Section 2 of this paper surveys the best known functional and struc-
tural testing methodologies. Section 3 discusses the results
currently known from testing theory. Section 4 presents reliability
theory and develops it in the context of error elimination as the goal
for testing. Section 5 introduces an error elimination strategy for
testing programs; it is based upon the concept of "error propagation. "
The final section proposes areas in which further research seems

promising.




2 Survey 9of Dynamic Validation

21 namic ana

Dynamic analysis [How78] involves the execution of @ given pro-
gram with specific test data. The output is compared with the specif-
ication to decide correctness. Test data selection may be based wupon
the actuval code or upon the specifications. The former case is termed
"structural testing" since the structure of the program is considered
in the test data selection. The latter case is termed "functional
testing” because only the input-output behavior 1is considered in
choosing test data.

2 1L 1 Structural Testing

The goal in structural testing is program coverage. If the code
of & program can be sufficiently “exercised” (or covered) it seems
Treasonable to conclude that any incorrect code will manifest itself,
thus revealing the presence of an error. Milier [Mil74] and Howden

{How78] suggest the following two structural coverage criteria:

(1) Statement ccverage — Every statement should be executed. It is
unreasonable to expect that unexecuted <c¢ode will parform

correctly when executed.

(2) Path coverage - Every path in the program should be ervecuted
"Path" i3 defined to be any possible flow of control through an
unintarprated flowchart. Thus a path from 2 given flowchart may

not in #fact be executable due to the particular conjunction of

conditions ‘“guarding" the path. Howden calls such a path
infeasible [(How761].

Clearly path coverage is imposszible for any program containing a
loop with a run time determined exit condition, since each repet:ition
of the loop determines a new path. Various apprecximations ¢to path
coverage are suggested ¢to reduce the problem to manageable size.

Among these are branch testing and path equivalence classes.

(1) Pranch testing. One approximation to path coverage is to ensyre
that all potential branches sre executed. "Pctential branches”
has been alternately defines to mean "the potential outcomes of

& given congditional” or "the means by which those outcomes zan bde
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obtained. " The difference arises in compound conditional such as

e e e . A

A v B where the potential outcaomes would merely require A v B to

evaluate in one case to T and in another case to F. The true
outcomes may be obtained from saveral different cases such as A =
T, B=aF and A=F , B=T as well as A =T, B = T A simple
resalution of the difference is to require branch testing to be
performed on modified programs in which all compound conditional
are expanded into simple conditionals.

(2) Path squivalence classes For the infinite set of paths in a

given oprogram, paths may be equated which share various struc-—

N tural criteria. For example, level testing equates paths that
have the same depth of nesting within a program as determined
) from the static code [Mil74]). This technique aims at testing
N nested paths, thereby guaranteeing coverage of all decision—-to-
5 decision paths in the program. A corresponding dynamic path
equivalence rtelation equates paths containing at most n itera-

tions of all loops.

The inadequacy of structural testing is shown by the following

'\‘4 incorrect soluticon fer computing the maximum of a and b.
1 if a > b
i then max .= 3 ]

else max .= -3

The test {(a=1.b=-1), (a=-1,b=1))> satisfies all the structural cri-
J teria given, (all statements are executed, all branches are taken, all
|
!

paths are executaed), yet, the error is not evidenced for this particu-
lar test.

As a result of pernicious examples like this, more refined strug-~
tural criteria have been proposed which require more detailed Jif-
ferentiation by the test. These areas may be broadly defined as muta-
tion testing (DeM78] [BudB80l, function testing (Fos78]1 [HowS8Cl, and
domain testing (Z2i8Q). Each of these makes additional assumptions
about the nature of <the program design, structure, or execution

behavior. With these assumptions a jreater refinement of test casas

is possible, resulting in a greaftaer "2xercise” of the program
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Mutation testing CDeMm78]1 assumes the “"competent programmer
hypothesis. " namely that a competent programmer under normal condi-
tions will produce code that is close to being the correct code.
Labeling the programmer’s code as P and the correct code as P%, it is
Teasonadle to assume that relatively few syntactic changes in P will
result in P% Alternately, P# has many "mutants" that are quite close
syntactically. A test set is considered reliable if it differentiates
P# from all of its mutants. A mutant is differentiated when it exe-—
cutes incorrectly on a given test set, in which case the mutant is
said to be “"killed." I¢f all reasonable mutants are killed by a given
test set., correct operation on that test set implies the program con-—-
tains no “Yunreasonable” errors, If the competent programmer
hypothesis holds, the test set is reliable since competent programmers

produce only reasonable mutants.

To limit the number of mutants:. it is necessary to restrict the
types and combinations of changes allowed. Common restrictions are ta
allow replacing expressions with limited size expressions, to disallow
inserting of arbitrary statememnts, and to disallow making arbitrary
changes in the flowgraph. It is ccgently argued {DaM781 that a test
set which kills single mutants will also kill double mutants. Empiri-
cal studies [(Bud801] involving mutation testing have shown it <o be
quite effective as well as quite expensive, since a large number of
mutants must be generated and executed. Hamlet ‘s system (Ham771]
reduces this time by executing compiled code up to the chosen point of
mutation, and then successively trying each mutant. Each system faces
two theoretical problems. namely, what happens when the mutant does
not halt within a specified period of time, and what happens when the
program does halt with correct output. In the first case:, an arbi-
trary time limit must be invoked, usually a function of the running
time of the original. In the second case, a human must ultimately
intervene. If the mutant is not the same as the original (as in the
case Oof an algebraic simplification):, then the test set must be aug-
mented. The procass begins again until all mutants are killed (or

shown equivalent to the correct program).

Foster has proposed & method that may be called fungtion tasting
in which he gives criteria for testing specific program constructs far

typical errors [Foe781]. Howden has generalized this to make <test
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cases sensitive to potential errors in any of the primitive semantic
functions supported by a programming languagae. For instance, consider
4 language in which each variable has two associated functions., STORE
(var, value) and RETRIEVE (var,value). The variable’s RETRIEVE function
is invoked whenever the variable must be evaluated: the variable’s
STORE function is invoked whenever the variable is assigned a value.
I+ a mutation occurs that substitutes one variable for another vari-
able in an expression, then the wrong RETRIEVE +function would be
invoked when that expression is evaluated. If the test set estab-
lishes at the mutation point different values for all variables, then
the wrong RETRIEVE +function would introduce an incorrect value into
the evaluation of the expression. If the effect of ¢this incorrect
value propagates ¢to the output then the error will be manifegted.
This test set is in some sense reliable for discovering errors involv-
ing the use of a wrong variable in an expression. Howden extends this
o considerably more complex functions commonly occurring in a pro-
gramming language. The method can potentially eliminate an entire
category of mutants on a single execution. Its weakness lies in not

guaranteeing that potential ervars manifest themselves.

Linear domain tegting [ZeiBOl is an application of theoretical
ideas on path testing given by Howden [How76é1l. Each path can be
uniquely characterized by & subset of the input space called the path

domain. A program contains a domain error if an incorrect path is
followed for an input and produces incorrect output. An incorrect

computation along a path is called a computatijon error. Domain testing
therefore is a version of path testing. A linearly domajined program P
satisfies the following:

(1) Antinput cannot follow an incorrect path and produce correct out-
put.

(2) No paths are missing from P

(3) The input space for P is continuous

(4 P contains no compound predicates.

(3) Adjacent domains compute different functions.

{(6) Each predicate in the program is a linear transformation of the
program inputs.
Certain predicate errors may not be detectable by testing a par-

ticular path. For example, it is impossible to determine (f "3" 13 the

correct constant in the predicate “x + 2%y £ O", for a path in wnich y

Y .
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has a constant value oaf O. Such situations may arise when a path
assigns O to y (“"assignment blindness") or selects only O-valued y‘s
("equality blindness"). Since assignment and equality blindness are
characteristics of the path up to a predicate, no amount of testing of
the path can eliminate the possibility of certain errors in the predi-
cate. Thus, e;erq path containing a3 predicate implicitly defines a
set of errors that cannot be eliminated from the predicate by testing
that path. The errors in a given predicate that cannot be eliminated
by testing a collections of paths is the intersection of all the nan-
detectable errors determined by each path in the collection. Thus,
testing an additional path is useful cnly if the non~detectable =2rrors
for the new path does not contain the intersection of all the non-
detectable errors for the paths already tested.

In thr case of a linearly domained program, both paths and predi-
cates can be modeled as linear transformations. Let C oe the
transformation for a path up to a predicate, let T be the transfcorma-
tion for the predicate, and let T’ = T + E be an erroneocus version of
T. The transformation T’ may not detectably different from T’ because
TC = T’C, or equivalently, EC = Z (Z is the zero vector). Solving EC
= I for values of E yields those predicate errors which are not
detectable due to assignment blindness. Predicate errors may also
remain undetected whenever EC <> Z but ECv = O for all v in the path
domain. Solving this equation ¢for E yields those predicate errors

which are not dectable due to equality blindness.

21 2 Functional Testing

In functional testing test cases are selected to exercise the
specifications rather than the code itself. This is sometimes termed
3 "black box" approach to testing since the code is ignored as a
source of information for selecting test data. The program’s function
is the only concern; if the program satisfies the specification 1t is
correct and coverage criteria are unnecessary. Of primary concern are
the special values for each input variable given by the specification.
Test points are selected to ensure that values are input for both
extremal and non-extremal points as well as special values of eavery

variable. This quickly results 1n a combinatcrial explosion, con-

trolled by partitioning and refining *the overall requirements for the




LN ¥ & BN
’ R
Beirpl” < T

M. -8 *."’"‘

-8=-

code. Partitioning associates inputs that are closely relationed to
one another: refining associates particular functions and the code
that implements them. Howden [HowBOb] provides an excellent overview

of functional testing.

The most general specification available for functional testing
is the requirements document that specifies overall system operation
Testing requirements involves selecting test points that aim at deter-
mining overall satisfaction of the system goals. Details of how the
function is computed are ignored:; an attempt is made to handle ¢the
different combinations of possible input categories. Consider, for
example, a file system. There may be requirement that a COPY does not
destroy the original file. Such a requirement may be tested without
regard for where or how files are stored. In designing the system.
decisions are made on how to represent a particular file type. These
decisions imply that certain functions may be necessary to implement
the COPY operation: these are termed “design functions. " Testing of
these individval functions may be done in the same manner as the test-
ing of the COPY requirement, but on a smaller scale. Even more
detailed design functions may be specified at 3 lower level. In this
manner, the combinatorial problems are somewhat decreased. By identi-
fying various abstractions that are present in the input data it is

possible to further reduce the number of combinations

2 2 Symbglic Execution

Before leaving this survey of testing methodologies. it is
appropriate to comment upon a hybrid between testing and formal verif-
ication called symbolic execution [(How771 (Cla771 and (Han741]. Fcrmal
verification requires a proof of various mathematical propertias to
demonstrate co~rectness;, symbolic execution 3ids in the proofs of
these properties by allowing execwution of the pragram with symooi:ic
data. This is one step beyond data flow systems such as CAVE ([(3st7&]
in which the program is abstracted into a flowgraph with movement of
data along the paths. The entire semantics of the projzramming
language must be at hand to enable complete interpretaticr of the gre-
gram during symbecliic execution This enables the construction of path

conditions (the sequence of decisions made along a3 path; which zan be

an aid in documenting the program anJd in determining act:al test 1acta
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that can satisfies the path condition. Formal verification is aided

in providing a description of the output in. terms of the input (and
possibly constants) which then need to be shown to satisfy the output
condition. The input condition aids in determining what bDranches may
be chosen, either beforehand as in DISSECT [How77] or interactively as
in EFFIGY [Han761].

Symbolic execution systems which attempt to deduce the value of
conditionals are only as strong as the theorem provers uvpon which they
rely. The inability of a theorem prover to decide the value of a con-
ditional does not guarantee that the value cannot be decided. Thus,
human input may de required more fregquently than necessary. Simi-
larly, having the path condition detarmined is of little value if test
cases cannot be auvtomatically generated to satisfy the condition.
Since such generation is impossible (as discussed in the next section
of this paper), the system must again rely upon human input. The path
condition is frequently so complex, *hat it is often easier for a per-

son to generate the test data frcm the code rather than the condition. }

hE Sfh.) g, -

L)
e

L I -:.)-”v




e e

!
L
>
1

-10-

2. DRevelopment 9of Testing Theory

The development of testing theory has followed mostly two direc-
tions, one of general unsolvability and one of solvability over par-
ticular classes of programs. General wunsolvability results ([Hen771
Trely heavily on recursive function theory and deal with automatic gen-
eration of test sets. With the general results rather dismal,
specific exceptions have been investigated. The search for classes of
programs in which testing is tantamount to formal verification is an

open area of research.

General unsolvability results in testing theory ultimately lie
close to the heart of recursive unsclvability, ¢the halting problem.
Formal proofs of the results in this section may be found in many
excellent sources (Ham74] (Hen771; the presentation here will be from
a testing viewpoint. First, we need some notation and a few simple

definitions, as taken from L[Lin72].

Notation: I# P is a Program then (P] denotes the function that
P computes. The output of P on input x may be written as [PJI(x), if
LP] is defined for input x. Dom([P]) denotes the domain of C(P1].

"In" designates set membership and "#" designates set intersecticn.

Definjtion A specifjcation S is a set of ordered pairs satisfying the
following:

2. S is recursive,

b. dom(S) is recursive
Definition A program P is said to be correct with respect to a specif-

ication S iff

dom (LP] # §) = dom (S)

Definition A test set is a subset of the domain of 3 specificatian.

Definjtion A program P gatigsfjies a specification § cn 4 test set T iff

-

For All x In T, CPJ(x)is detined and (x, (PJ(x)) In S

The following classic theorems from recursive function thecr:; are

included for campleteness sake. For procfs saze [Hen77] or (Ham7T31
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Theorem (Halting Problem) Let Pl; P ’o . be an effective enumera-
tion of all programs (say by their lexical order). There does not
exist a program P satisfying the fcllowing:
1 if [P J(x) is defined
Pl(x) = "
O i¢ thJ(x> is not defined

Theorem (Program Equivalence Problem) There does not exist a pro-
gram P satisfying the following:
1 i¢ (P 1 = [P 1
X Y
[PI(x,y)=

O otherwise

We obtain almost immediately from the above theorems the following

result:

Gorgllary
There does not exist a program that generates or recognizes a test

set T that satisfies any of the following properties (far all programs

P, specifications S, paths p, statements s, expressions e, and values

v):

a. P satisfies S on nonempty T

b. Path p of P is executed by T

c. Statement i of P is executed by T

d. Expression e in P evaluates to valve v
e

P satisfies S an a nonempty subset of T

The results from above lead to a Murphy-like rule for the results
of testing theory, namely, if a3 dasired result is powerful and gen-
erally applicable then it cannot be cbtained. Since weaker raesults
are not vusvally desired. to maintain strength it is necessary to
reduce applicability. Hence, whereas the corcllary gives a gloamy
general forecast, for specific classes of programs and specifications
all the results are obtainable. Threa prominent examples, tBudB801,
{T3i70), and CHow?”8bl, completely characterize the program function by

& finite set of tests and a few restrictions about the pragram struc-

ture.




Early work that has bearing upon testing programs from a particu-
lar class comes +from complexity theory based on the LOOP hierarchy
[Meyb67] and further analyzed by Tsichritzis (Tsi70]1. Briefly, a loap

program consists of assignment statements

{assign> : = Jvard> = {lexp>
<exp> ci= Svard | <vard> + 1 1 0O

and loop statements
-+
<loop> .= LOOP <var> <assign> END

When control reaches a loop statement the <var> is evaluated ¢to a
non-negative value and the list of assignment statements is then exe-~
cuted that number of times. Arbitrary nesting of 1loop statements is
allowed. Loop is exactly ¢that cless of LOOP programs with only
assignment statgments. LOOP programs (i>Q) are LOOP programs in
which the maximum nosting1 level is i. Thus, LOOP syntactically
contains all LOOP programs. Meyer and Ritchie tM!qb?S*have shown that
LDDP1+1 prnporlq1 contains L.DDPi praograms semantically as well. Thus
there are some LOOP program functions that are not computable by
LOOP  programs. Ft:éhormoro. the infinite union of functions camput-
ablnlbq the LOOP programs is exactly the class of primitive recursive
functions and thus the hierarchy of functions computed by LOOP pro-

grams forms a hierarchy of primitive recursive functions.

Tsichritzis [Tsi70] investigated the first two levels of the LOOP
hierarchy ¢to show that LOOP prngrams correspond to a subclass of
primitive recursive functions cilled simple functions. His result for
testing theory is that a finite set of input-output pairs uniquely
determines a simple function. He provides an upper bound on the size
of the test set which is computable from the simple function. Hence
the size can be functionally related to the structure of the LOOP
program since *%the determination of the simple function computed is
mechanical. The significance is that LGOP1 forms & class of oprograms
which has an algorithm for generating a test set that proves the pro-
gram correct.

Two instances of program classes for which the above corallary

has a solvable counterpart are given in (How78b) and [3ud801] The

first class is the set of programs characterized by %he functions they
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compute, multinomials. The second class is a subset of LISP programs
that satisfy a particular recursive schema. The techniques wused to
generate data for these classes are not readily extendible to other
program classes because both rely upon the mathematical properties of

the functions being computed.
4 Reliability Theory

In attempting to provide a firmer foundation for testing (and ¢to
allow it to be called a "theory") a reliability theory has been
developed for testing computer programs. This theory encompasses the
results of the previous section, and provides a framework for evaluat-
ing the various ad hoc testing strategies mentioned earlier in the
paper by relating the notion of correctness to that of thoroughness of
a test set. Since test sets are essentially finite (excluding symbolic
evaluation), A4 reliable test set must somehow capture the egssence of
the program on a finite domain. The results from the previous section
certainly imply that such sets cannot be algorithmically constructed
or recognized except for certain classes of programs. Reliability
theory has therefore concentrated on ways in which test sets can be

identified for particular classes of programs.

4.1 Early Attempts

CGerhart and Goodenough first attempted to provide a theoretical
basis for testing [Goo73%]. A test selection criterion C is said to be
reliable if and only if all sets that satisfy the criterion either
prove the program incorrect (by failing to meet the specifications) or
satisfy the specification. A test selection criterion C is said to be
valid if and only if for every error point there is a test set that
satisfies the criterion C and proves the program incorrect. From
these two definitions, Gerhart and Goodencugh prove their fundamental
theorem, namely, if a reliable test %that satisfies the 13pecifications
of & program is also valid, then the program is correct. Thus. the
job of the tester is to demonstrate that @ given criterion is both
reliable and valid. Thereafter, one successful execution on a test
set satisfying the criterion proves the program. In some cases 1t is
trivial ¢to prove either reliability or validity., but rarely i1s 1t
trivial to prove both. In fact, as shown by [WeyB80l, if a test selec-

tion criterion is not wvalid 1t must be Teliable and 14 1% 13 not
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reliable it must be valid. Indeed. if £ is an invalid criterion, then
there is a point for which the program is wrong and no test set dis-—
covers this., Hence:. all the test asets imply the program might bde
correct and therefore the criterion is reliable. I# the criterion is
not reliable, then some of the test sets satisfying ¢the criterion
disprove the program Thus, for every point there is a test set that
proves the program incorrect and the test selection criterion C is
therefore valid.

In contrast to this thicket of intertwined definitions, Howden
(How761 and others have espoused the following definition of reliabil-~

ity:

Definjtion A test set is reliable for a program P with rTespect to a
specification S if+f

P satisfies S on 7T == P gatisfies S on dom(S),

The distinction made between reliable and valid are effectively
combined into one notion ¢that still allows correctness to be con-
cluded, but at a rather strong price. The cost is found in having to
verify that the correctness of +*the program does fallow from its
correctness on a finite domain. Howden analyzed path testing in the
light of this definition and showed that rather strong assertions must
be proved abouyt the program if path testing is to be reliable
Categorizing errors into computation errors (incorrect computation on
& given path), domain errors (incorrect path selection), and case
errors (missing paths)., he was able to show sufficient conditions
under which path testing is reliable for two of these errors, assuming

compound errors Jo not occur. The results are as follows:

(1) Computation errors - All members of the path domain for a path

containing the error produce incorrect output

() Domain errors - The path domain for the correct and incorrect
pragram share no points in common. Furthermore, the compguted
function along each path 1is assumed to be different. This

prevents an input from following an incorrect path and still pro-

ducing the correct aqutput
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(3) Case errors - Howden incorrectly identified these with domain
errors, resuvlting in path testing being reliable for case errors

iff useless code exists in the pragram text.

As can be seen from Howden’s results, even assuming that all
paths can be tested, reliability is simply too strong a requirement to
determine by testing.

4.2 Error Reliability

Weakening the notion of reliability either requires narrowing the
class of programs that will be considered or reducing the requirements
of correctness. Linear domain testing [ZeiBO] is an example of the
former and mutation testing (DeM78] is an example of the latter.
Recently Howden {(HowB8Ql, Foster (Fos78], Ostrand [WeyB80l, and Weyuker
CWeyB81] have proposed methods which can be labeled grror-based testing
strategies. The goal is to demonstrate the absence of certain prede-

fined errors rather than (necessarily) the correctness of the program.

Test data is selected to enable errors, if present, to be revealed
CWeyB80]1, provided the execution of the program does not prevent an
error from being manifested. Thus, error-based testing is an example

of reducing the requirement of correctness to weaken the notion of

reliability. The following is a definition of modified reliability:

Definjtion 7 A test set T is E-reljatle (Error reliable) for a program
P and specification S if¢

P satisfies S on T -—~> P contains no errors of type E.

It should be noted the concept of error type used in this defini-
tion is as yet  wundefined. In the next section "error” is shown to
have two distinct usages, namely to reflect the incorrect cperation of
the program <(a functional error) or to pinpoint the location of the

error in the code (a structural errvor).
4. 3 rTor

To gain a deeper understanding of varicus testing methodologies
it is necessary to understand each methodology ‘s concept of errer,

There are two general vantage pocints +from which errors may bLe

approached, one structural and onmne functional. In the st~uctural
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approach an error is considered to be associated with the text of the
program, for example, an incorrect conditional that causes some i1nputs
to follow an undesired path. In the functional approach an error is a
program—computed input-output pair not satisfying the specifications.
In this approach no mention is made of how the output is computed.
The difference between the two is evidenced when an input follows an
undesired path but produces the correct output. In this case the pro-
gram has a structural error but a furctional error has not been mani-
fested. (It must be the case however that a functional error can be
manifested on some other input., or the "error" is not one at all.)
Both approaches to error have their advantages and disadvantages and a
corresponding range of applicability.

Howden [How74] uses & structural concept of error. in ¢that an
error is within a particular program and hence can be spoken of as
being a particular expression, within a particular statement, on a
given path, etc. Such a structural approach is intuitively satisfying
since it emphasizes that incorrect operation of a program vultimately
lies in some portion of the program text. Correcting the error there-
fore naturally translates into transforming the program text. Hence
to identify that portion of the program as an error seems natural.
This approach has two deficiencias, especially when the concept of
errors is wused to compare various testing methodologies. First, a
structural approach to error definition is more applicable ¢to pro-
cedural rather than functional languages., since in the former the
location of a given error provides caonsiderably more information than
the latter (e.g. the type of the expression values, possible paths,
etc). In self modifying languages such as LISP and SNOBOL., statements
may be executed which do not even exi1st in the source code. Second, a
structural approach makes the correspondence between specification and
correctness difficult to state. For indeed, it may be quite clear
that a program has failed to meet a specification by. say. terminating
with incorrect output for a valid input. Yet, it is inappropriate to
speak of "the"” program error since such an error may actually involve
the compound result of several statements, none of which is wrong in

and of itself, but all are wrong as a whole.

A concept of error that avoirds the above problems with the struc-
tural approach lies in the operation rather than the structure 2¢ the

r
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program. Such an approach may be termed "functional" because it deals
with the meaning of the program as expressed by its input—output
behavior. In a functional approach an error is associated with ¢the
input-output bLehavior of the program as determined by the specifica-
tions. An error occurs when a given input produces an incorrect out-
put; such an input is labeled as being in error. In actuality, the
error is the incorrect functioning of the program over some subset of
its input space. Two different programs in different programming
languages can in this sense contain the same error —~- they produce the
same incorrect output without regard to the syntactic constructs that
encode the error. Thus, a functional concept of error allows error
analysis across programming languages, something difficult to achieve
within a structural concept. Alse, a functional view allows ¢the
correspondence of errors and program correctness to be clearly stated

To describe a program error in the functional sense means to describe
a set of inputs that produce wrong results. With such a description
it is possible to locate the structural construct that encodes the
error with a good possibility of seeing how to correct it. The
Teverse is not true, however, since being told that given set of
statements is wrong requires, in essence, the reconstruction of the
functional error category from the specification to enable the error

to be corrected.

To gain a better understanding of the various testing methodolo-
gies, it is wuseful ¢to see what kinds of functional and structural
errors sach reveals. We have seen already that a useful structural
categorization of errors is that of computatioconal, domain. and case
errors. Functional error categories have not been so clearly del-
ineated, but may be inferred from the types of tests done in func-
tional testing. If the competent programmer hypothesis applies to the
function implemented as well as the code produced, we may conclude
that functional errors occur as slight perturbations of the specifica-
tion.

Errors in @ function may be categorized as follows:

(1) Boundary conditions - The function may be incorrect on boundary

points of the specified ranges of the input variables

.
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(2) Improper subfunction selection - The function may involve ¢the
computation of several subfunctions., some of which may be invoked

at an improper time.

(3) Improper abstract relationships— The specification treats certain
input variables as an abstraction. The functian may group the

wrong variables in attempting to implement the abstraction.

(4) Special values ~ Values like O, 1, NULL often carry multiple
meanings acraoss data types. The function may be incorrect at

these values.

It is important to note that these are errors in the sense of the
implemented function (the input-output pairs) and not in the sense of
the location in the program.

Clearly, no method is ideal for discovering all errors. Further-
more, every method specializes in finding particular errors. Thus, it
is frequently suggested that a viable testing strategy is to combine
several of the above structural and functional methods to achieve
greater coverage of error categories. With more categories covered it
is reasonable to assert that more errors will be discovered, thus

increasing confidence in the correctness of the pragram.
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9. Error Propagation and Elimination

To maximize error coverage in testing, much current research has
focussed upon how to combine validation techniques that cover dif-
ferent error categories. One such combination is proposed here with
examples. It involves a hybrid of verification and testing in which
testing is used to establish the preconditions for a proof which
essentially states that given an error, it will propagate to the out-~-
put of the program.

Proposals for combining testing and formal verification have

appeared several times C[(Goo73]1, (Ger7&]. and (Gel78]. Primarily the ;

focus has been on how to simplify formal verification. The finite i

nature of testing suggests that testing could be used to prove the

; basis step for some of the inductive proafs necessary in formal
verification (Goo7%1. The difficult nature of theorem proving:. sug-
gests that only tested programs should be proved; the arror prone
nature of theorem proving suggests that all proved programs should be
tested [Ger76]. Geller [Gel78] has attempted to caombine testing and

formal verification by wusing +testing ¢to simplify proofs. In this
case, testing is used to verify cumbersome predicates, e. g. those
) involved in describing array initialization. The emphasis in all
i ( these apprcaches is that formal verification demonstrates the correct~
? ness of the program and testing supports this process.
' j The proposal of this paper is that testing and verification may
)

be combined in quite another way. resulting in conclusions abou%t the
absence of certain errors in the program rather than the total
correctness of the program. This is best explained by the fcllowing
testing strategy:

(1) Identify the error categoriss of interest.

(2) Identify locations within the program where the errors could

oCcCuUuT.

(3) For each potential error location:

a. Derive a condition wunder which an error will be
creatad at the given location (the creation condition?




-20~-

b. Derive @ condition under which an errvror will pro-
p

agate to the end of the program (the propagation condi-
.Qn)‘ prog gondi.

¢. Produce the conditions of (a) and (b) with appropri-
ate test data points, then inspect the output. If the
output 13 correct, the potential error does not exist at
the given location.

To clarify the abtove strategy, a precise description must be given for

“error propagation.”

3 1 Error Propagation

A comprehensive treatment of error propagation requires viewing
the semantics of a program from a functional and structural perspec-
tive. In the functianal approach [Lin79], a program is treated as a
mathematical function, i.e. a set of input-output pairs. In the
structural approach, a program is treated as a means of describing a
set of computations. Informally. a computation is a trace of a
program’s execution. The set of computations of a program wuniquely
determines the program function, but not vice versa. The ordered
input-output pairs of the program function bear no necessary correla-
tion to the program variables. To provide this relationship, the con-
cept of a "program state” is introduced.

Definjtion A state of a program P is a mapping

s: var -=-2> value

which associates a unique value with every variable of P.

An injtial state of a program is a state which exists before any
statements of P have been executed. A final state is a state which
exists after the program has halted

Some variables {x )} of an iri1tial state may be designated as pro-
i
gram j{npyt variables. Their co-responding values {u ) are called the
i
program j{nput. Some variables {y > of an initial state may be lesig-

1
nated as program Qutput variables. Their corresponding values {v
1

upon program termination are callad the pragram 2:y3put. I no vari-

ables are explicitly designated az input or output. then all variables

are considered b:oth input and output
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The preoqram fynction that & program P computes, denoted by (P1,

is therefore.

P11 = {(u,v) ! v is the output of P on input u,
where U and v are ordered sets of values)

Any arbitrary program segment P implicitly defines a program function
with all variables designated input and output. For the purposes of

this paper, “program" and “program sagment” are wused interchangeably

unless otherwise stated.

Each approach to program semantics has certain advantages and
disadvantages for error analysis (see Section 4.3). For error propa-
gation, a functional semantics enables a clear definition of the con-
ditions under which an error in an initial state will propagate to a

tinal state.

Definjtion Let y be in the range of the function f. A lavel set of f
is
D = {x ! #{(x) = yJ,
Yy

for some element y in the range of f.

Definition A propagation condition B of a function ¢ 15 a predicate
defined on the domain of £ satisfying the following:

For All x <> y in dom(#),
B(x) and B(y) implies £(x) <> #£(y).

All domain elements of £ which satisfy & propagation condition B gare-
duce different members of the range of ¢ i.e , they fall into dif-
ferent level sets of #£. This is not to say that each pair of domain
elements from dJdifferent level sets necessarily satisfy B. It should
also be noted that there may be more than one propagation condition

for a function.

The concept of a propagation condition explains step (3) of the
above strategy. Suppose a program P is divided into two parts, R and
Q with (P] = [(Qlo(R1. Suppose further that R and G ave correct and
that R’ is an 2rroneous mutant of R. To ascertain that R is indeed
the correct version and not R’, exec.te P an an arbitrary input s If

LRI(s) can be shouwn to be different from [(R’J(s) and both [RIts)> and

[R“J(9) satisfy a propagation condition for [(Q), then ¢the functional

TN
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error from R’ will propagate through Q. If the propagation condition
is satisfied, inspecting the output allows two conclusions. Not only
is it known that P is correct for s (any testing strategy would have
demonstrated this!), but it is also known that P’ (P with R’ replacing
R) is not correct. I# P’ were the correct version, P would have been
incorrect on input s. Therefore, a potential error (that of substi-
tuting P for P’) has not occurred. If all potential errors were elim-
inated in this manner, the program would be proven correct for all

input data.

A computational semantics i1s aprropriate for analyzing the state

transformations that occur as a program executes.

Definjtion A compytgtion pojnt for a program P is an ordered ¢triplet,
¢ = (n, i, s) where

n is a statement number of a statement in P,

i is the jiteration count, the number of times that

statement n in P has been executed.
s is a state of the program P.

This definition includes the iteration count to allow an isolated com~
putation point to be identified with a particular statement as well as

with a8 particvlar execution of that statement

Definjition A computation for a program P is a sequence of computation
points representing the execution of P along any feasible path aof P.

A sybcomputation for a program P is a subsequence af a camputation of
P.

A few comments are in order concerning the precading definitions.
First, the level of detail for computations could be increased. Cam-
putation paints could contain the entire history of the execution of
the program, including all the register loads, comparisons, etc
Second, a computation of a segment P’ of a program P is not neces-
sarily a subcomputation of P [F’'] may be defined for i1nputs that may
never occur as the result of earlier execution in P; therefore, 7’ may

have computations that do not asccur as subcamputations of P. Third,

computations are defined only for feasible paths. Non~feasibdble paths
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could never be executed and therefore have no corresponding computa-

tions.

Computations and computation points facilitate the discussion of
error creation. Incorrect code must be executed for a functional
error to occur. Thus, the caomputation for a functional error contains
the information necessary ¢to locate <the error. An erTorT may be
“"created” in one of two ways. First, an incorrect statement may pro-
duce an incorrect intermediate state. This state is incorrect in that
the correct statement would have produced a different state. Second,
the execution of an incorrect statement may lead to an incorrect suc-

cessor statement being executed.

Any distinguishing characteristic of a correct computation may be
used to decide if an arbitrary computation is incorrect. For
instance, suppose that a final state is only obtainable by a computa-
tion of length greater than n. Any computation of length less than n
may then be rejected as incorrect. The praocess of rejecting a caompu~
tation may be viewed as applying a "characteristic function” %o the
computation. This function selects a subset of the camputation points
from the computation and then evaluates an expression on that subset.

The following defines the format for two classes of characteristic

functions.

Definjtigon For any computation C = (c1, ... 2¢€ ) for a program
J

(a) eaxp@n on C denotes the value Cexpl(s)

where s is the state of the last computation

point for statement number n in C.

If a computation point for statement number n
does not exist in C.

then exp@n is undefined.

(b) exp@hist(n’ gn ¢ denotes the k—-tuple,
(CLexpl{(s ), Lexpli(s ), ... ,Llexplis )
i 2 k

_.___.“,-.ﬂ.'“_‘
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where
k is the number of occurrences in C of statement number n and
$ , ... 5+ s are obtained from the k computation points

1
in C for statement number n.

If k = O then exp@hist(n) is undefined
If k = 1 then exp@histin) = exp@n.

In the expressions exp@n and exp@hist(n), n and hist(n) are called the

computation point specifiers » or more simply, the gspecifiers for the
expression exp.

The specifiers are restricted to selecting either the last computation
point or all computation points for a particular statement. This is
because the primary concern is the effect a given statement has on a

computation,

An error creation gcondition applied to a state of a computation
point tells whether the succeeding computation point is in error. A

creation condition is defined for a class of mutants of the correct

construct. All states s which satisfy the creation condition are
transcendental C[RowBl] for the class of mutants, i. e. when presented
with a ¢transcendental state -1 no two mutants from the class

transform s inta the same state. For example, for the class of poly-
nomials P+(M) with positive integral coefficients bounded above by M
any input value greater than M + 1 is transcendental (Row811]. I¢,
therefore, an 2xpected program error is the substitution of one member
of this class for another, an error will be created whenever the foly-
nomial is evaluated on a number exceeding M + 1. This error will be

reflected in the next computation point if the value is assigned to a

variable. I¢ more computing is done first, as in the case of a com-
parison, this error may be ganceled and have no effect on the next
computation point. It is here that the detail of the computation

impacts the detection of gstructural errors. A more detailed computa-
tion better distinguishes the instances of error creation and error

cancellation.

Once an error has been intrcduced intc a computation, it is then

necessary to describe how the error will propagate to another part of

the computation, To do this, it 13 sometimes de2sirable to relate
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functionally the values of expressions at two different points in the
computation. If the second expression evaluates to an incorrect value
whenever the first evaluates to an incorrect value, then any error
reflected by the first expression will propagate to the second expres—

sion.

Definjtion Given a program P and class of computations S, for specif-
iers x and y.

expl@x inflyencesg exp2®y 9n S

is used to mean the following:

For all € and D in 8 for which expl@x and exp2@y
are both defined,
if expl@x on C <> expi@x on D then
exp2@y on C <> exp2@y on D.

I# S is omitted, it is assumed to be the set of all computations of P.

A simple example will illustrate the idea of influence. Coansider

the code:

1 read (1);
2 read (y);
3 while y < 10 do
begin
zZ (= 2 + yi
S y =y + 1
end;

& write (y, 2)

For the class of computations S in which y@2 = O for the above code:

(1) 221 influences 2€4 implies that the output of the 1loop will bDe
different for every input value of 2.

27 3@2 influences 284 implies that the output of the Ioog wili be
ifferent for every input value of y. his is ¢rivial g true for
the class S, because the input y—value is constant for

(3) 1@hist(3) influences 284 implies that the output of the loop will
b't different for every sequence of : values the loop zan com—
pute.

(4) 1@4 influences @45 implies that an error in 2z upon loop exit will
propagate to the output statement.

The influence dependences for a program cannot ‘e determined

algorithmically “ecause this could require deciding if arbitrary loops
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halt, which is impossible (see Section 3). When such dependences can
be shown: however, propagation corditions may be easier to prove. For
example, suppose x@nl influencas y@n? and ye@n2 influences zen3 for a

computation C. I# it is known that «x contains an incorrect value at
line n1, then 1z contains an incorrect value at 1line n3, and the

error has propagated.

In Section 4.1 a computation error was defined to be an incorrect
computation along @ particular path. To understand the propagation of

a computation 2rror, the following definitions are given.

Definjition Let P be & program with computation C in which computation
! point ¢l = (ni, 11, s1) precedes c2 = (n2, 12, s2). The intermediate
‘ code determined by cl and c2 is the set of statements of P executed
between nl and n2 in the computation C. The jntermedjate function

. determined by c1 and c2 is the program function of ¢the intermediate
. code.
Definjtion Let C = (¢O, ... , cm ... , cn) be a computation for a

program P.

Let R be the intermediate code determined by cO and cm.

( Let @ be the intermediate code determined by cm and cn.
d Suppose R is incorrect and that R# is a correct mutant
A : of R.

j Let sO be a valid input for P for which [R] is defined.
; Let

J fRI(s0) = si CR*1(sO) = si#
: €Q1(s1) = s2 [Ql(s1i#) = 2%
]

Let exp be any expression over the program variables.

(a) 13 s1 <> s1* then R has created a gtate error si for si%# on input
s

(b) I# R has cresated a state error and s2 <> s2%, the state error sl
for sl prcecpaqates throygh G

(c) If Cexpl (s1) <> Cexpl (si#) then R has created an gzxprassion
errq9r for exp.

The following theorems are trivially true by substitution of the
definitions given earlier in this section. They are given ha2re %o

illustrate how the concepts are related.

adiias TTETE
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Theorem A state error s1 for s2 propagates through the intermediate
code, P, iff sl and s2 are in different level sets for [P].

Progof Consider state error si1 for s2. If sl and s2 are in different
level sets of [(P), then [P (s1) <> (P] (s2), and the state error pro-
pagates through P. I# the state error propagates through P, then ([Pl
(s1) <> [PY (s2). Thus, si1 and s2 are in different level sets of P.

Theorem Let P be the intermediate code delimited by statements n1 and
na. Let C and D be tuwo computations of P with different initial

states sc and sD. respectively.

(1) explenl influences exp2@n2 for all computations executing P,
iff

() 1If sc. ‘D are in different level sets of [expll

then Cexp2lCP] (s ) <> Cexp2l1LP1 (sk)
J

Proof Assume (1). I+ s and ‘D are in different level sets of [expl],
then Lexpll (s ) <> [expld) (s ), By definition of influence, (exp2]
(P (sc) <> Cexp2l [P (sD) andD(Z) follows immediately.

Assume (2). I¢ Cexpll (sc) <> L[expll (sD) then sc and SD are in dif-
ferent level sets of Cexpll. Combining this with (2) yields Cexp2l
[P] (s ) <> Lexpzl) (P] (sD), and (1) follows immediately by the defin-

ition of influence.

It has been noted already that there can be more than one propa-
gation condition for a function £ This is claar because every propa—
gation condition is implicitly defined by 1ts propagation set, the set
of all values that satisfy the propagation condition. Every subset of
a propagation set is a propagation set so there are many propagation

conditions.

Ihegorem Let B be a propagation set for a function ¢, No two members
of B are in the same level set of #.

Proof Let x and y be different elements of & By definitionr of a prc-

pagation set, f(x) <> f(y). Thus, x and y car not %e in tha same

level set of #¢.
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What characteristics, if any, qualify one propagation condition
to be declared "better"” than another? One characteristic is the "gen-
erality" of the propagation condition or sey. Recall that a potential
errar can be eliminated only if a state error can be detected when it
occurs. A state error sl for s2 can he detected only if both s1 and s2
satisfy the propagation condition, i. e. both si1 and s2 are in the
propagation set. Therefore, increasing the size of the propagation
set increases the number o0f potential errors that can be eliminated
I# B is any propagation set for the function ¢, it satisfies the fol-~

lowing set equation:
B = {x | For All y <> x in B, #(x) <> £y}

Clearly, the smallest propagation set is the null set. Also by the
last theorem above, all members of B are in different level sets of
. Since two propagation sets may both be infinite, describing one as
larger than an other is inappropriate; the term "most general” may be
used instead. Thus. a most general propagation set of a function £ is
a propagation set that contains ohe member from each level set of f.
Associated with this set is a most general propagation condition

A second characteristic of a propagation condition 1is <that of
applicability. Until now it has been implicitly assumed that the
function will be applied to all domain elements. Since some values
may not be feasible as input to an intermediate program function, %the
propagation set should contain as many feasible values as possible.
Propagation conditions may therefore be compared on the basis of how

many feasible values they contain.

A final characteristic of a propagation condition is that of
efficiency. If two propagation conditions are equivalent in terms of
applicability and generality, they may be differentiated on the btasis
of their ease of evaluation. This efficiency characteristic can not
increase the number of errors that can be theoretically elininated,
but it may increase the number of errors that can te practically elim-

inated in an implementation.

2 & Testing Accymulation Frograms

Accumulation programs {Bas3Cl are the class of programs satisfy-

ing the following schema and restrictions:
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1 Q 2 = 20;
2 while Not (y In Null(Y) ) do
begin
3 z = acc (2, k(y)l);
4 y := h (y)
and
Restrictiops

g denotes all program variahles requiring definition for the loop
ody to be defined on any iteration. 1 does not enter into the
computation far h{(y) in line 4. Thus, 1 does not influence the
flow of control of the loop.

(2) The functionalities of h, k. acc and Q are:
Ehl : ¥ =—=> ¥
Lkl : Y —-=> Dbase
Cacel : Z x Dbase —=> 2
Q] : Z x ¥ —=> 2 x Y
where Y denotes the values the variable may assume, Z denotes

the values the variable z may assume. and Dbase denotes the range
of Ckl., Null(Y) denotes all values of y which terminate the loop

(1)

The following is an example of an accumulation loop:
2 :=0;, y :=0;
while y < 10 do
begin
2 sz o+ Yy
y 1=y + 1

end

The variable : accumulates information as the loop iterates <through
different values of y. In this accumulation program we have,

Y, Z, Dbase = Natural Numbers

Null(Y) = ¢y | y <= 10}

Lh]l = successor function

Lkl = identity function

Laccl = addition function
Clearly, the restrictions are satisfied

In an accumulation loop, the restriction on 2 ailows the computa-
tion for y ¢to be separated frcm the camputatian for 1z The above
accumulation loop schema @ is therefcore functionally ejquivalent to thne

fo9llowing transf:ormed schema QQ:
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Qa: n = Q;, z .= z20;

while Not (y In Null(Y) ) do
begin

Rhinl .= y;
n :=n <+ 1;
y = hy)
end;
J = 0O;

while } < n do
begin

Z, k (RhtJ]) )

The first loaop in GG computes the same intermediate values of y that
Q computes, but stores them in an array Rh (results of h). The second
loop in GG processes the array element-by-element, extracting ¢the

desired information (via k) and accumulating it into z (via acc)

Lemmy The accumulation loop G computes the function:

[Q1¢(z0,y0) = (2,y) such that
z:=(tacc]((acc](...(tacc](zO-th(gO)?,tk](th](qO)),.A‘,[kJ(tth—l(gO))
q:-Cth(qO)
where n is the smallest value such that [h]n(UO) is in Null(y).

To be able to test accumulation loops for possible errors, 1t is
necessary to wunderstand how errors propagate through an accumulation
loap. Suppose H is a class of mutants of h; we say that H is an grror
gategory for h. Clearly, & substitution of h’ in H for h may affect
the computation of the loop. If it can be shown that the substitution
resuvlts in a "positive error” {(Th3’{y) Z Chl(y)) during every itera-~
tion of the loap., and that this positive error accumulates into the
variable 2, then 2 will necessarily be incorrect on loop termina-
tion. The following theorem states sufficient conditions t92 guarantee

that such accumulation does occur

Definition For two k—tuples,
A= {a , .. , @a Y and B = {b , . s b )
1 k 1 k

A <= B if¢ For all i, a <= b .
i i
This definition is applied recursively if a2 and b
1 i
are sets of the same cardinality. If A <= B then B pazxinizes A

‘9— DRUAT S e Ve
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Theorem For the accumulation program schema G above, let
H denote the error category of h

Y denote the set of y-values for
all possible iterations of the loop.

Z denote the set of z-values for all possible
iterations of the loop.
Dk denote a subset of the domain of [k1.

Assume Y. 2. and Du each have a partial ordering operator, <=

Let O/ result from substituting h’ in H for h in Q. Let C be the com~
putation of Q on input yO and C’ be the computation of G’ on input yOC.
The following conditions are sufficisnt to guarantee that an expres-

sion error fer z occurs after executing Q@ and @’ on input yoO.
(1) Q and Q' iterate the same number of times (> 1).

{2) For each iteration, C[hl(y) <= Ch'1(y),
or
For each iteration, Chl(y) 2= Ch'1(y).

(3) For at least one iteration, Tthl(y) <& Ch'l(y)

(4) (k] is strictly monotonic on D

(S) For each i1teration both [hli{y) and Ch 'I(y) are members of Dk.
{6) CLaccl is strictly monotonic in bLoth variables

Prooé

Let Rh denote the tuple containing the initial

and intermediate y-values computed by Q.

Let Rh’ denote the tuple containing the initial

and intermediate y-values computed by G’

By conditions (1) and (2) of the :heorem, assume without

loss of generality that Rh’ maximizes Rh
By conditions (3), (4) and (S), J«J(Rh’) maximizes [kI(Rh).

Let

CkI(Rh) = (2 , ...,2 ) and <{TkI(Rh’) = (2 -, ... . 1 °).
1 n 1 n

For schema 2 (by the preceding 1l:2mma),




1 2 = Laccl( Lacclt

and for schema @/,
z = faccl( Cacecl¢

By repeated application
we may concliude that an

In the following example,
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(CacclCz ,2 ), 2.0, ...% 2
0o 1 n
(Caccllz ‘vz )y ¢z ")0 ...3r T 7)
0 Q n

of condition (&) of the +“heorem,

expression errar occurs for z.

the above theorem will be used ¢to

in testing a program containing an accumulation loop.

aid
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3.3 Example

The strategy and the theory developed are now applied to a pro-

gram which computes the area under a curve by rectangular approxima-
tion. Test data is not included due to the generality of the polync-

mials in the program.

program calcarea (input, output);

var a, b, incr, area, value : real;
begin
1 read (a,b,incr); JLincr > O}
2 value := pil(a) ;
3 area = Q;
4 while a + inecr <= b do
begin
S area ! = area + value # incr;
a = a + incr;
7 valve = p2(a)
end;
8 incr := b - a;
9 if incr >= O then begin
10 area := area + value # incr;
11 writeln (‘area by rectangular method: ', area)
end 2lse
12 writeln (’illegal values for a=’, a ' and b=', b)
end.

Using the strategy given above, we have the folilowing.

L Ildenti$y the error categories

Incorrect polynomials p1 and pa. bath of which are members cf
-+

P (M), the set of polynomials of the form

Q<=3 <= Mand a i3 an integer.
i i

s
P (M) is an important category cf polynamials for which transcen~

dental testing is appropriate [RowBll. (See Section 5. 1. of this

paper. )

NSRRIV Wi
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[ ' (2) Incorrect comparisons. A wrong comparison operator is used.

(3) Incgrr-ct accumulation. Wrong variables or wrong operators are
used.

(4) Incorrect initialization.

(3) Incorrect output. An incorrect variable is wused in an output
statement.

Step & ldentify the locations where ervrors could occur. [

Error Lines

. 1. Incorrect Polynomials (IP? 2,7

2. Incorrect Comparisons (IC} 4,9
) 3. Incorrect Accumulation (IA) 3. &, 10
: 4. Incorrect Initialization (II) 2,3,8
5. Incorrect Output (I0) 11,12

Step 3 Derive Creation and Propagation Conditions

A creation condition and propagation condition are now provided
for each of the error locations given in step 2. A creation condition
juarantees that the error, if present. produces a state error. It
must be satisfied just before “he potentially erroneous statement is
executed. A propagation condition guarantees that this state error !

propagates to an output statement. It is evaluated immediately after

VR

the potentially erroneocus statement is executed.

Each error is designated by an error category abbreviation, #fol-

R .

lowed by a line number, e.g., IP 7 designates "Incorrect Polyneomial at
line 7. "

grror IQ 1112

B .y cregtion gondjition =— all variables have different values
¥ ) Propagation Conditjon -- true
F
¥ grror 1A 19
? Two cases are considered. . !
f (1) An incorrect accumulation operator has baen wuses; perhaps +
' should have been -, #, or /.
»
!
'
-~ et N ’ R
X L
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4 rror Greation Condition
N - value * 1ncr <3 0
{
: »* area > 2 and value #* incr 2> 2
- / value * incr > 1| and area > 1
| Propagation Conditign ~— true.
7"1 (2) An incorrect accumulation base eslement (value # incr) has been
! vsed.
i Error Creation Condition
; Off by a constant true
‘ Off by a factor value # incr <> ©
Propagation Condjtion -- true.
Error IC 2
Perhaps the >= should have been anocther comparison operator. é
1
. 1
Error Creation Condition
> incr = 0
< true ]
4
<= incr < Q
\ .
\ ( = incr > Q ]
b 4 <> incr <= 0
A Oropagatign Cgnditign -— true.
{
Ll
! Error 11 8

Three cases are considered.

(1) The wrang variable may occur on the left hand side of tne assign-—-
ment. This error is particularly nasty because any resuiting
functional errors depend upon whether the incorrect variable is
used ("live"”) or not used ("dedad”) in the remaining computation.
If the incorrect variable is dead, then a functional error can
occur only when the correct variable influences the output cf the
program, Data flow analysis: wilil detect this type of error.
Additionally, if the incorrect wvariable is live, then a func-
tional error will alse occur whenever the incorrect ~variable

influen-es the output oFf the program. Since data flow amalysis

can 130l3%e the firat error, thze second error 135 considered hera.
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Error Creation Condition
Substitution of a live Ciner <> b-ales

variable for incr on the
left side of the

assignment statement

Propagation Condjtion
Two propagation conditions are jiven, the first Tepresenting a
domain error and the second representing a computation error.
Lincr >= 0 and (b-a) < Qles
Cincr >= 0 and value < 0l@4
Recall that the specifier @4 implies evaluation of these expres—
sions at loop termination. These two conditions may be combined
yielding:
Cincr 2= O and ((b < a) or value <> 0)Je4

(2) A wrong variable may have baen substituted on the tight hand side

of the assignment.

Error Craagtign Condition
variable ‘a’ is an All variables have different
incorrect variable values from ‘a’.
variable ‘b’ is an All variables have different
incorrect variable values from ‘b’

Propagation Condition -~ Same as in case (1).

(3) An incorrect constant expression may have baeen used on the right

hand side of the assignment.

Error Creation Condition
Of+f by a constant true
Off by a factor fo-a -Q0J@4
Propagation Condition -~ Same 3s in case (1)
grror IP 7

Creation Cong:%tion
a@b > M + 1 for each iteration of the loop and the loop 2xecutes more
than ance.

Reca.l that all values greater than M + 1| are transcandental <er all
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-+
polynomials in P (M), See Section 5.1 of this paper.

Propagation Conditign -— true

The simplicity of this propagation condition is guaranteed by the
accumulation 1loop theorem from the previous section. In order to show
this, it must be shown that the loop is an accumulation loop and that
it satisfies the conditions of the theorem. If this is the case, then
the theorem states that there will be an expression error for area on
loop exit. Furthermore, on the last iteration of the loop, a + incr
<= b on loop entry, so b — a >= O on loop exit. But, b - a 2= { 1is
the propagation condition which ensures that area@8 influences
area®10; any error in value@l0 merely increases the magnitude of the
error in area@loQ. Thus, if the loop satisfies the conditions of the
theorem, the given error will propagate to the output statement in
line 11.

To show that the looep is an accumulation loep, we note the +fol-
lowing correspondences to the schema G:

y corresponds to (a.b,incr,value)
Null(Y) = {(a, b, incr,value) ! a + incr > O}
2 corresponds to area

Chl(a. b, incTt, value) = (a+incr, b, incr, p2la+incr))

Lkl(a, b, incr, value) value # incr

Laccl{area, x) = area + x

Clearly, area does not enter inta the computation of h. Also,

Y Real x Real x Real x Real
y4 Real

Dbase = Real

Dk = Real x Real x {incr} x Real, i.e. Dk

has a fixed value cf 1incr.

To show that the loop satisfies the conditions of the theorem, we
first note that the error category is
H=<h’ ! Chl‘(a,b,incr,value) = ia+incr, b, incr, (P'I(a+incri)?,

-+
where P’ is a member of P (M),

The theorem conditions are therefore satisfied
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(1) Substitution of h’ (from error category H) for h does not change
! the number of times the loop executes, since the computation #for
a, incr, and b remain unaffected.

(2) Provided the creation condition is satisfied for all iterations
of the loop.

Lh’l(y) >= [hl(y) for each iteration
or
Chl(y) >= CLh‘1(y) for sach iteration.

I# this were not the case, then for some ti and t2, transcenden-
tals for h and h’,

Chl¢tl) > Ch 1(t1) and Ch J(E2) > Chl(t2).

Since the functions Chl and [h'’] are continuous, there must be a
point t between t1 and t2 such that Chl(¢t) = Ch J(t). Thus, ¢
is not a transcendental. But this is a contradiction since all
goints greater than M + 1 are_<¢ranscendental and ¢t 2 ¢t1 > M + 1.
M

hus the functions Ch) and [h’] do not cross on any point beyond
+ 1 and one always maximizes the other on this interval

. (3) 1If the creation condition is true, ([h’J(y) <> Chli(y) for all
: iterations of the loop.

{(4) [k] is strictly monotonic on Dk since incr is a nonzero constant

for the 1loop.

(S5) For all iterations [hl and Ch‘’] produce members of D . This is
- ctlear because all members of H vary only in their computation for
. value, leaving the computation a, b, and incr unaffected

(6) TLaccl is strictly monotonic in area and value#incr.

Error 1A &
A wrong h function may be implemented. Two instances are considered.
P —~—
’ { Error Creation ndi n
‘ Of¢ by a constant > O true
A ' Off by a factor > 1 ince > 0

! Prgopagation Condition -- true
4 For either error, @ > b upon loop exit, as can be seen from the last

iteration of the looap. Thus, [incr < 0J@B causes a domain error with

statement 12 executed in place of statement 11.

Error IA 3
A wrong k function may be implemented.
Error Criagign condition
Off by a constant true
Of¢ by a factor value #* incr <5 O
Propagation cCondition ~— true.
Since neither of these two errors affect the monotonicity of k. the

arguyment used for IP 7 holds.
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Ercror IC 4
In place of the “<=, another comparison may nave been substituted.
TTov creatjon Conditjon
< a + incr = H
> true
o= a + incr <> b

a + incr < b

<> a + incr >= b

Propagation Condition

The substitution of < for <= is an excellent example of a mutant
being unobviously equivalent to the given program. This is discovered
while attempting to find the propagation condition for this ‘"error. *
The substitution may cause the loop to halt one iteration too soon,
with termination guaranteeing that incr is unchanged by line 8.
Thus, the execution of line 10 computes the same value for area as an
additional execution of line 5. An additional execution of the loop
would result in lincr = 0J@B, so [value * incr= 0]J@9. Hence. statement
10 would not change the value of area computed by the additional exe-
cution of the loop. Thus: the substitution of < +for <= is an

equivalent mutant and the propagation condition is false.

For the other four substitutions ¢to influence an output, a
created error must propagate to statement 11 or 12. A propagation con-
dition of a + 2#incr < b is sufficient, since this guarantees the loap
will execute at least twice, causing the loop computed value for area

to be strictly greater than the tail approximation in lines 8~-i0Q

Error 11 3

Suppose area should have been initialized to another constant
Creation Congition -— true
Propagation Cgndjition -— a <= 1» ‘

With this condition satisfied, area@®3 influences areaill. Therzfore,
if an error has occurred at line 3, an incorrect value for area will
be printed by line 10.

Error IP 2 1l 2
Creation Gonditjon -- a > M + 1
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Propagation Gondition --~ & < b < a + incr
This condition forces the program to follow the path,
p = (1, 2, 3, 4¢, 8, 9¢t, 10, 11),

skipping the loop body. f[a < bJ@1 ensures that C[incr > 0J@9, 3o
value®10 influences area®ll. Since value2l0 = value@2 for path p,

value@2 influences areallo.

24 Appluing the Strategy

It should be noted that errors have been eliminated in a
"bottom-up" fashion. Recall that the justification for the strategy
assumed that a program could be saparated into tuwo segments R and G,
with Q being correct. Certainly if R is the whole program. G is
trivially correct. As errors are eliminated from the end of R, then
Q can expand to contain this "correct” code. It is possible, however,
that R contains two structural errors that mask one another, with the
first preventing discovery of the second on certain paths, and vice

versa. For example,

1 x = 3 * y;

2 Z = x — 4;

3 write (z);

Suppose the error category of interest is "incorrect constants. "
Clearly, both the creation and propagation condition are true for this
error in lines 1 and 2; any state will produce an incorrect state and
the errvor is guaranteed to propagate to line 3. Yet. for y@l = 4, the

following program is equivalent and contains the incorrect constants:

1 X 1= 2 * yj;

2 .= x;
3 write {(2);

Testing additional paths in which statements 1 and 2 are not cou-

pled, and testing @ <coupled path with more inputs are two ways of

reducing the impact of such errovs. The situyation is zimilar o that
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of linear domain testing in which assignment and equality blindness
prevent certain predicate errors from being eliminated. Here, however,
the blindness is due to a presumed error in the first part of the pro-
gram, rather than in the correct operation of the first part of the
program. Evidence exists that such coupling rarely occurs in practice

{Bud801, but investigation of the phencomenon may yield greater insight

into error propagation. Such investigation is currently under way
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conclusions

An error-based testing strategy has been proposed for combining

testing and verification in a new way. Some of the advantages are as

follows:

(1)

(2)

(3

(4)

(9)

In structural and functional testing incorrect code may remain
undetected even though executed. Consequently, the certainty of
the results is difficult to determine. The strategy given heve
can guarantee that certain common errors are not present ir the
program. Structural and functional testing, on the other hand,
only guarantee the elimination of very few error categories.
Test data that guarantees the elimination of certain errors in
addition to satisfying the usual functional and structural cri-
teria is necessarily of better quality than test data that issves
no guarantee. Thus, the proposed strategy provides a means of

increasing test data quality.

When quality is lacking, the tester can be directed to specific
lines of code where potential errors have not yet been elim-
inated. This guidance is more specific than possible with struc-

tural testing.

The proposed strategy is more efficient than mutation testing faor
killing particular mutants. First, the actual mutants do not have
to be generated or executed. Second, one test paint can elim-
inate all mutants along an execution path. Third, mutation test-
ing provides little guidance when a mutant executes correctly

The proposed strateqgy guides the data selection process towards
selecting data that creates the state in which an arror could

occur and in which it will propagate.

The proposed strategy is based upon the function testing sug-
gested by Foster and Howden. from which the concept of a creation
condition may be inferred. The inclusiaon of a propagation condi-~
tion in the strategy providas greater assurance that created
errors will not be canceled by the remaining execution of <Lhe

program.

The proposed strategy extendts lirnear domain testing by removing

two restrictions. First, it need not Dbe assumed that the
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predicates to be tested are a linear combination of the input
variables. Second., it need not be assumed that a domain error
necessarily produces a functional error. Indeed, this must be

proven in the proposed strategy

The proposed strategy combines testing and formal verification in
a new way. The goal is to force the program to inform the tester
of its own errors through testing. Formal verification is wused
to support this process. As a support tool, formal verification
is uvsed in a restricted capacity, lessening the difficulty nor-

mally encountered in formal procfs of correctness.

Weyuker [WeyB1l] has argued that a testing strategy should use all
the information that can be obtained from the program: the
program’s specification, and ¢the errors commonly encountered

This strategy suggests that the computation of the program itself
is another important source of information. The wealth of infor-
mation that 1is contained in the computation has been virtually
untapped by structural testing. The computation of a program on
one input effectively eliminates a huge number of possible
errors. Greater knowledge of these eliminated errors would

increase cur confidence in a program’s correctness.

One weakness of the proposed strategy is the assumption shared
mutation testing that errors can be eliminated one at a time;
two errors do not interact in such a way that each error prevents

other error from being eliminated by the strategy. There is evi-

dence that this "coupling effect" rarely occurs in practice C[BudB8Q1,

yet

the strategy does not currently handle such situations. The con-~

cepts of creation conditions, propagation conditions, and influence do

provide a framework in which such errors can be discussed and

analyzed. Such work is currently in progress.

(2)

Point (7) suggests the direction of research needed.

Program errors need to be categorized and creation conditions

developed for each category.

Loops other than accumulation loops need to be analyzed as ¢o

their error propagation characteristics.
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(3)

(4)
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Automatic methods for developing propagation conditions need to
be developed.

Methods need to be developed +for correlating the information
cbtained from different computations. A set of computations may
collectively eliminate an error category for which no individual
computation in the set can. For example, consider the potential
error in which an incorrect variable accurs in an output state-
ment. The creation condition of "all variables different fraom X"
may not be satisfied on any one computation, but over a get of
computations all variables may indeed be differentiated from X.
This potential error can therefore be eliminated by the collec-
tive evidence from the set of computations.

T e carrara:
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